• Events
    • EURETINA 2022 Hamburg
      • Registration Information
      • Main Programme
      • Satellite Symposia
      • Exhibitors
      • Hotel Bookings
      • Abstract Viewer
    • Future Meetings
    • Upcoming Digital Events
    • EURETINA 2021 Virtual
      • 2021 Virtual Sessions On-Demand (Members Only)
      • Programme
      • Satellite Symposia
      • Sponsors
  • Free Resources
    • Webinars
    • Podcasts
    • 2021 Virtual Session Abstracts
    • EURETINA Guidelines
    • EURETINA Brief
    • IME ePlatform
  • Membership
  • About
    • EURETINA Board
    • Subspecialty Sections
    • Bye-laws
  • Opportunities
    • Mentorship Programme 2022/23
    • RMCR grant programme
    • Observership Grant Programme
    • Women in Retina
    • YOURS
    • CME Credits
  • Member Login
Menu
  • Events
    • EURETINA 2022 Hamburg
      • Registration Information
      • Main Programme
      • Satellite Symposia
      • Exhibitors
      • Hotel Bookings
      • Abstract Viewer
    • Future Meetings
    • Upcoming Digital Events
    • EURETINA 2021 Virtual
      • 2021 Virtual Sessions On-Demand (Members Only)
      • Programme
      • Satellite Symposia
      • Sponsors
  • Free Resources
    • Webinars
    • Podcasts
    • 2021 Virtual Session Abstracts
    • EURETINA Guidelines
    • EURETINA Brief
    • IME ePlatform
  • Membership
  • About
    • EURETINA Board
    • Subspecialty Sections
    • Bye-laws
  • Opportunities
    • Mentorship Programme 2022/23
    • RMCR grant programme
    • Observership Grant Programme
    • Women in Retina
    • YOURS
    • CME Credits
  • Member Login
  • May 1, 2017
  • Author: EURETINA Brief

Pre-clinical research shows re-programming of sugar metabolism may benefit electrophysiology and retinal anatomy in retinitis pigmentosa (RP) models.

Scientists based at the Department of Ophthalmology, Columbia University, New York, have shown that manipulating a metabolic pathway in photoreceptor cells may provide benefit in models of retinitis pigmentosa (RP). While the research is at a significantly early stage, the under-lying principle of re-programming sugar metabolism may provide a potential strategy to impact the course of disease progression, according to the study authors. Animal models treated to alter their photoreceptor metabolism to favour glycolysis showed improved retinal electrophysiology and anatomical structures in their outer segments. According to one of the researchers, Dr. Vinit B. Mahajan, MD, PhD, from the University of Iowa, the experimental approach would not be immediately applicable to humans however, several established enzyme blockers bringing about a similar effect could be evaluated for human clinical testing.

 

As is well established in the medical literature, RP affects an estimated 1.5 million people globally, with 1 in 10 Americans carrying a recessive RP allele. One such genetic mutation occurs in the phosphodiesterase-6 (PDE6) gene, coding for a G protein effector known to control cGMP levels. This lesion affects rod photoreceptor cells to begin, causing a patient to initially experience poor night vision. As the rod photoreceptors deteriorate, cone photoreceptor cell death follows by means of apoptotic pathways leading to increased visual impairment. An estimated 8% of all recessive RP is understood to arise from mutations in the PDE6 gene. Consequently, to test a clinically relevant model, the researchers used mice with a histidine to glutamine mutation in the Pde6 gene (bH620Q/H620Q), a model of the disease in which a severe form of RP begins approximately 2–3 weeks after birth, resulting in almost complete blindness by the age of 8 weeks. Given that photoreceptors are significantly active cells, converting 80%–96% of glucose into lactic acid via aerobic glycolysis, part of the disease pathology is thought to arise from defective metabolic processes. Based on this assumption, the research team attempted to rescue degeneration by encouraging the photoreceptors to engage in anabolism, (the building up of molecules from smaller units, as opposed to catabolism which breaks down larger molecules). This was achieved by inhibiting Sirt6, a transcriptional histone deacetylase repressor of glycolytic flux. The team used a gene therapy based mechanism to interfere with Sirt6 using an inducible gene disruption strategy.

 

The effects of the gene disruption was to re-programme rods into a process of perpetual glycolysis in order driving the accumulation of biosynthetic intermediates which could improve outer segment (OS) length and thereby enhance photoreceptor survival and functional vision. Treated models showed an up-regulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis and provided electrophysiological and anatomic rescue of both rod and cone photoreceptors. Commenting on the study, Prof. Stephen H. Tsang, MD, Ph.D., stated that, “although gene therapy has shown promise in RP, it is complicated by the fact that defects in 67 genes have been linked to the disorder, and each genetic defect would require a different therapy. Our study shows that precision metabolic reprogramming can improve the survival and function of affected rods and cones in at least one type of RP. Since many, if not most, forms of the disorder have the same metabolic error, precision reprogramming could conceivably be applied to a wide range of RP patients.”

PrevPrevious
NextNext

You might also like

Free Paper Session 14: AMD / CSC

Read More

Subspecialty Session: Uveitis I – Diagnosis, work-up and investigational procedures

Read More

Instructional Course: Managing floaters: from physiology to surgery

Read More

Meet the Keynote Speakers

Euretina Lecture with Sobha Sivaprasad
Opthalmologica Lecture with Enrico Borrelli
Ophthalmologica Lecture with Enrico Borrelli
Gisbert Richard Lecture with Catherine Creuzot-Garcher
Gisbert Richard Lecture with Catherine Creuzot-Garcher
Kreissig Award Lecture with Hiroko Terasaki
Kreissig Award Lecture with Hiroko Terasaki

Secretariat Address
European Society of Retina Specialists
Ground Floor, The Apex Building 
Blackthorn Road
Sandyford Business Park
Co Dublin, D18 H6K2

Phone:+353 1 2100092
Email: [email protected]

EURETINA 2022 Hamburg

Opportunities

Memberships

Forum

About

Privacy Policy

Newsletter Sign up

By clicking 'Subscribe', you agree to the terms of our Privacy Policy. 
 
 

Follow us

© EURETINA 2022 All rights reserved

  • Events
    • EURETINA 2022 Hamburg
      • Registration Information
      • Main Programme
      • Satellite Symposia
      • Exhibitors
      • Hotel Bookings
      • Abstract Viewer
    • Future Meetings
    • Upcoming Digital Events
    • EURETINA 2021 Virtual
      • 2021 Virtual Sessions On-Demand (Members Only)
      • Programme
      • Satellite Symposia
      • Sponsors
  • Free Resources
    • Webinars
    • Podcasts
    • 2021 Virtual Session Abstracts
    • EURETINA Guidelines
    • EURETINA Brief
    • IME ePlatform
  • Membership
  • About
    • EURETINA Board
    • Subspecialty Sections
    • Bye-laws
  • Opportunities
    • Mentorship Programme 2022/23
    • RMCR grant programme
    • Observership Grant Programme
    • Women in Retina
    • YOURS
    • CME Credits
  • Member Login